
BOARD DESIGN:
 The brain of the BRL board is an 8-bit RISC microprocessor runnnig
at 16Mhz. On-board code is developed in C and compiled with processor
specific GCC modules. Machine-code is uploaded directly from a Linux
host to the on-chip 4KB EEPROM. Programming in C gives us the potential
to perform fast computations on the data as it goes in/out. For example we
can low-pass filter incoming position data, providing a cleaner signal for
the Linux host’s kinematics calculations. The processor provides a host of
other services including I2C and on-chip ADC converters available should
the need for those capabilities arise.

 USB 2.0 is a powerful and versitile data-transfer standard offering a
range of speeds and tranfer types, optional data-integrity verification, and
the ability to combine those into selectable transfer-mode configurations.
Our board can be programatically transformed to any of those configuration
states. We chose to use bulk-mode microframe transfers.
 A single bulk-mode microframe transfer requires 128 microseconds and
carries a 6KB data payload. This timing is sufficient for seven transfers
within 1ms timing constraint (1 KHz refresh rate). A 6KB data payload is
plenty to carry data for 8 24-bit encoders (192 bits=24 bytes) and/or 16 16-
bit DACs (36 bytes) The spare capacity can be used for additional data
such as a first derivative (velocity) calculation of each position encoder,
board configuration parameters, or any other pertinent data.
 Data inputs to the first generation board come from two 16-bit encoder
chips, whose value is queried in two sequential reads across the 8-bit
bus. Generation two of the control board will accept inputs from 8 24-bit
encoders.
 Control outputs are via two 12-bit DAC channels outputting zero to five
volts. Version two of the board will add a CAN bus networking connection
taking advantage of processor-native CAN control to provide more output
possibilities. Additional output channels on the current board are useful for
debugging: RS-232 (serial) output can connect back to a host for traditional
“printf: outputs, and a bank of 8 LEDs can be configured to display a byte of
information in lights.

Fingertip Haptic Display:
 The Fingertip Haptic Display (FHD) is
a five bar mechanism that is operated with
the fingertip of the user. It is designed to
accommodate the workspace of the human
finger in flexion/extension. The FHD enables
touch based user interaction with a virtual
environment. The user can essentially feel
a virtual object, exploring shape, texture
and compliance. Promising applications are
palpation training for medical personnel,
museum displays: enabling the visitor to “touch” art, as well as
psychophysics research: exploring the
limits of human touch perception.
 The device uses two voice coil actuators
in the armatures to achieve low inertia,
low friction and high power capabilities
for rendering virtual objects with a high
degree of realism. High-resolution position
sensors are integrated, allowing four
devices to be stacked for use with index,
middle, ring and little finger.

Novel Control System for Robotic Devices via USB
Blake Hannaford, Jesse Dosher, Arash Aminpour, Ken Fodero, Hawkeye King

INTRODUCTION:
 As the number and complexity of projects in the Bio-Robotics
Laboratory has increased, so have our control system needs. Most
importantly we need an I/O platform that offers easy mobility and scales
easily to higher degrees of freedom. The requirements for our system
include lightweight cabling, portability among robotics applications,
high-bandwith and low-latency (data refresh rates of 1kHz, minimum).
Our solution is the BRL FHD3.1 board based on a USB 2.0 connection
to a Linux host. USB gives us high-speed bandwith enough to control
high-degree of freedom robotic systems over a single cable. An on-
board processor, custom software and tailored hardware give us a
tremendously powerful and versatile control platform. This platform
will be the beating heart of many robots we have in the works; it will
‘pump’ data from encoders, to a Linux host, and out to CAN bus, analog
output, Serial, I2C, and can do low level processing along the way.

THE PROBLEM:
 While some off-the-shelf control
systems were sufficient for our
simpler robots, we could not find a
solution that would scale to additional
degrees of freedom with reasonable
cabling requirements. Cables for
PCI-based systems added too
much bulky weight and were often
short, prohibitive tethers (see fig 1).
Furthermore, those systems required
costly expansion cards and dedicated
hardware, unsuitable for use on
multiple projects. Perhaps most
importantly, the commercial solutions
were often provided ‘black-box’,
offering only high-level programming
APIs and little or no low-level access
to the control hardware. Lack of
low-level access meant we could not
engineer the most efficient data-paths and
perform fast, low-level data manipulation
(bit-banging). Thus conventional control
platforms were limiting the complexity and fine-tuning of our robots.
 We would have to develop our own control system, customizable to
our specific performance needs.

DESIGN REQUIREMENTS:
 • Scalable to additional degrees of freedom
 • “White box” solution, maximally configurable
 • Simple and versitile cabling.
 • Capable of controlling many types of robotic systems
 • Minimum of dedicated hardware
 • “Plug and play” can be taken down, transported and set up without
 hassle
 • High performance suitable for human interfaces (>=1KHz)
 • Connect seamlessly to a Linux host for programmable controls
 software

Fig.1 The Problem: PCI control sys-
tems required prohibitive cabling

and expensive dedicated hardware.

VERSION ONE DESIGN FEATURES:
 • 8-bit CPU runs at 16 Mhz
 • USB 2.0 configured to run at 53MBps broken into 125us
 “microframes” carrying payloads of 6KB.
 • 2-channel 12-bit D/A converter outputs two 0-5V signals
 • 2 16-bit quatrature encoder chips
 • DAC and encoder chips run on a single 8-bit data bus. USB module
 is on a separate 8-bit bus.
 • Board has a built-in UART to assist debugging via RS232.

PROJECT STATUS, CURRENT DIRECTIONS:
 Version one of the board is complete with all beta-level software in place.
Drivers for the system are working in real-time under RTAI Linux . The current
control loop is hard coded at compile time, and a control toolkit is under
development to allow interactive control of attatched devices from user-
space on the PC host.
 Version one of the board will be used for controlling two of our Lab’s
test-platforms, the Pulley Board (see fig. 7) and one two-degree-of-freedom
digit of the four digit Fingertip Haptic Display (see fig. 8). Experimental
results from those test-platforms will go into the design of the systems to be
controlled by version two of the board.
 Version two hardware is under development, slated for completion within
two months. We are designing it for maximum versatility, and with two
robotic systems in mind: the BRL Surgical Robot (See fig. 9) and also the
four-digit, eight degree-of-freedom Fingertip Haptic Display (See fig.8). Of
those two, the four-finger FHD is ready to be hooked up as soon as the
board is finished.
 Drivers and real-time control software from the first version will be readily
ported to version two. The second version of the user-interface is on the
drawing board and will be a VR-type simulated environment showing a 3D
model of the control environment.

BRL SURGICAL ROBOT:
 A teleoperated laproscopic device with haptic feedback. 7 degrees of
freedom give the robot a spherical range of laproscopic access. The low
inertia design uses motors located at a stationary base and connected to
axes by pretensioned cables. The robot is divided into two parts, a goss-
scale upper arm with a higher-precision lower arm holding laproscopic
tools.
 Control of the surgical robot’s 7 degrees of freedom will be via the
BRL control board. Cabling requirements between the base-platform
and the PC-controller (with user-interface) will reduce to a single USB
cable. This will simplify set-up and use, and make the robot more easily
servicable. Complete access
to control system hardware will
allow fine-tuning of this high-
precision robot.

VERSION TWO DESIGN FEATURES:
 • Same CPU and USB configuration provides 8-16 independent
 degrees of freedom.
 • 8 24-bit quadrature encoder channels.
 • 16 16-bit DAC outputs.
 • 16 16-bit A/D converters
 • On-board CAN bus connector provides additional output channels

Fig.7- Lower arm
is attatched to
stationary base

Fig.2 The BRL
control board
requires only one
USB cable for all
communication
with control
host. The fully
programmable
board mediates all
data I/O.

FHD investigators: Blake Hannaford, Jesse Dosher, Rainer Leuschke, Elizabeth Kurihara and
Hawkeye King
Surgical Robot and Pulley board investigators: Blake Hannaford, Jacob Rosen, Denny Trimble,
Jesse Dosher, Mitch Lum, Brandon Mander, Tim Ramsey, Arash Aminpour, Ken Fodero

Projects presented on this poster are funded by Samsung, National Science Foundation (NSF),
and US Army Medical Research Command (MRMC).

Poster design by Hawkeye King

Fig. 4 Control loop timing diagram.

SYSTEMS UNDER DEVELOPMENT:
 At BRL we have several systems already developed or under
development that will be controled by versions one and two of our
control system.

Fig. 9: Rainer gives the FHD the
finger

Fig.8: CAD drawing shows a single
digit of the FHD

Fig.3: “The Board” version 1.

SOFTWARE, DRIVER AND HOST
SYNCHRONIZATION:
 In order to meet stringent timing requirements of high-performance force-
feedback robotics the entire host-based control system executes in a “hard-
real-time” environment provided by RTAI (Real-Time Aplication Interface)
extensions to the Linux kernel. RTAI Linux ensures code execution at
exact times or intervals of time (specified in nanoseconds) by preempting
the Linux kernel and taking exclusive control of the processor as necessary.
Coding for the RTAI computing context demands adherence to a stringent,
high-performance coding paradigm.
 Our USB device driver is originally based on the usb_skeleton.c driver- a
model Linux driver for USB devices. Rewrites of the driver were necessary
to execute bulk-mode microframe transfers. Great effort went into ensuring
RTAI compliance, as all sleeping and blocking function calls in the driver and
USB subsystem were tracked down and rewritten, removed or avoided.
 A similar driver was written for the CAN bus, in preparation for using the
built-in CAN functionality of our board. The available open-source CAN
drivers provided a user-space API unsuitable for access in kernel-space or
from RTAI. Again we had to crack open the black box and re-wire it to our
needs.
 The control-loop for the system is implemented as a hard real time
task-loop that executes with a given frequency (specified at compile time,
we’ve chosen to use 1ms). At the tick of one millisecond the loop begins
by sending a USB packet from the host to the board requesting the latest
encoder values. Next, we read the position values from the USB bus into a
data structure holding all information for all degrees of freedom. From there
we call a function calculate_force() that will update force values in our data
structure. That function is a modular system; parts of it will be modified for
the unique dynamics of each robot. The force value is output to the board
and the loop sleeps until the start of the next period.

Fig. 6: BRL Surgical Robot attatched to a
stationary base.

PULLEY BOARD:
 The pulleyboard is a one-degree-of-
freedom testbed for robotic assemblies.
A brushless Maxon DC motor is drives an
armature via a pretensioned cable. The
cable runs through a series of pulleys
between the motor and the armature to
simulate the surgical robot’s cable-pulley
configuration.
 This test platform will be used to test
various pulley and cable options for the
surgical robot. The Pulley board system
also provides a simplified robotic system
for exploring related problems and as a
control development testbed.

Fig.8: Upper arm.

Fig.5: The pulley board is a testbed
for the cable-pulley mechanism.

http://brl.ee.washington.edu/

