
BOARD DESIGN:
 The brain of the BRL board is an 8-bit RISC microprocessor runnnig 
at 16Mhz.  On-board code is developed in C and compiled with processor 
specific GCC modules.  Machine-code is uploaded directly from a Linux 
host to the on-chip 4KB EEPROM.  Programming in C gives us the potential 
to perform fast computations on the data as it goes in/out.  For example we 
can low-pass filter incoming position data, providing a cleaner signal for 
the Linux host’s kinematics calculations.  The processor provides a host of 
other services including I2C and on-chip ADC converters available should 
the need for those capabilities arise.

 USB 2.0 is a powerful and versitile data-transfer standard offering a 
range of speeds and tranfer types, optional data-integrity verification, and 
the ability to combine those into selectable transfer-mode configurations.  
Our board can be programatically transformed to any of those configuration 
states.  We chose to use bulk-mode microframe transfers.
 A single bulk-mode microframe transfer requires 128 microseconds and 
carries a 6KB data payload.  This timing is sufficient for seven transfers 
within 1ms timing constraint (1 KHz refresh rate).  A 6KB data payload is 
plenty to carry data for 8 24-bit encoders (192 bits=24 bytes) and/or 16 16-
bit DACs (36 bytes)  The spare capacity can be used for additional data 
such as a first derivative (velocity) calculation of each position encoder, 
board configuration parameters, or any other pertinent data.
 Data inputs to the first generation board come from two 16-bit encoder 
chips, whose value is queried in two sequential reads across the 8-bit 
bus.  Generation two of the control board will accept inputs from 8 24-bit 
encoders.
 Control outputs are via two 12-bit DAC channels outputting zero to five 
volts.  Version two of the board will add a CAN bus networking connection 
taking advantage of processor-native CAN control to provide more output 
possibilities.  Additional output channels on the current board are useful for 
debugging: RS-232 (serial) output can connect back to a host for traditional 
“printf: outputs, and a bank of 8 LEDs can be configured to display a byte of 
information in lights.

Fingertip Haptic Display:
 The Fingertip Haptic Display (FHD) is 
a five bar mechanism that is operated with 
the fingertip of the user. It is designed to 
accommodate the workspace of the human 
finger in flexion/extension. The FHD enables 
touch based user interaction with a virtual 
environment. The user can essentially feel 
a virtual object, exploring shape, texture 
and compliance. Promising applications are 
palpation training for medical personnel, 
museum displays: enabling the visitor to “touch” art, as well as 
psychophysics research: exploring the 
limits of human touch perception.
 The device uses two voice coil actuators 
in the armatures to achieve low inertia, 
low friction and high power capabilities 
for rendering virtual objects with a high 
degree of realism. High-resolution position 
sensors are integrated, allowing four 
devices to be stacked for use with index, 
middle, ring and little finger.
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INTRODUCTION:
 As the number and complexity of projects in the Bio-Robotics 
Laboratory has increased, so have  our control system needs.  Most 
importantly we need an I/O platform that offers easy mobility and scales 
easily to higher degrees of freedom.  The requirements for our system 
include lightweight cabling, portability among robotics applications, 
high-bandwith and low-latency (data refresh rates of 1kHz, minimum).  
Our solution is the BRL FHD3.1 board based on a USB 2.0 connection 
to a Linux host.  USB gives us high-speed bandwith enough to control 
high-degree of freedom robotic systems over a single cable.  An on-
board processor, custom software and tailored hardware give us a 
tremendously powerful and versatile control platform.    This platform 
will be the beating heart of many robots we have in the works; it will 
‘pump’ data from encoders, to a Linux host, and out to CAN bus, analog 
output, Serial, I2C, and can do low level processing along the way.

THE PROBLEM:
 While some off-the-shelf control 
systems were sufficient for our 
simpler robots, we could not find a 
solution that would scale to additional 
degrees of freedom with reasonable 
cabling requirements. Cables for 
PCI-based systems added too 
much bulky weight and were often 
short, prohibitive tethers (see fig 1).  
Furthermore, those systems required 
costly expansion cards and dedicated 
hardware, unsuitable for use on 
multiple projects.  Perhaps most 
importantly, the commercial solutions 
were often provided ‘black-box’, 
offering only high-level programming 
APIs and little or no low-level access 
to the control hardware.  Lack of 
low-level access meant we could not 
engineer the most efficient data-paths and 
perform fast, low-level data manipulation 
(bit-banging).  Thus conventional control 
platforms were limiting the complexity and fine-tuning of our robots.
 We would have to develop our own control system, customizable to 
our specific performance needs.

DESIGN REQUIREMENTS:
 • Scalable to additional degrees of freedom
 • “White box” solution, maximally configurable
 • Simple and versitile cabling.
 • Capable of controlling many types of robotic systems
 • Minimum of dedicated hardware
 • “Plug and play” can be taken down, transported and set up without 
      hassle
 • High performance suitable for human interfaces (>=1KHz)
 • Connect seamlessly to a Linux host for programmable controls
    software

Fig.1 The Problem: PCI control sys-
tems required prohibitive cabling 

and expensive dedicated hardware.

VERSION ONE DESIGN FEATURES:
 • 8-bit CPU runs at 16 Mhz
 • USB 2.0 configured to run at 53MBps broken into 125us 
   “microframes” carrying payloads of 6KB.
 • 2-channel 12-bit D/A converter outputs two 0-5V signals
 • 2 16-bit quatrature encoder chips
 • DAC and encoder chips run on a single 8-bit data bus.  USB module 
   is on a separate 8-bit bus.
 • Board has a built-in UART to assist debugging via RS232.

PROJECT STATUS, CURRENT DIRECTIONS:
 Version one of the board is complete with all beta-level software in place. 
Drivers for the system are working in real-time under RTAI Linux . The current 
control loop is hard coded at compile time, and a control toolkit  is under 
development to allow interactive control of attatched devices from user-
space on the PC host.
 Version one of the board will be used for controlling two of our Lab’s 
test-platforms, the Pulley Board (see fig. 7) and one two-degree-of-freedom 
digit of the four digit Fingertip Haptic Display (see fig. 8).  Experimental 
results from those test-platforms will go into the design of the systems to be 
controlled by version two of the board.
 Version two hardware is under development, slated for completion within 
two months.  We are designing it for maximum versatility, and with two 
robotic systems in mind: the BRL Surgical Robot (See fig. 9)  and also the 
four-digit, eight degree-of-freedom Fingertip Haptic Display (See fig.8).  Of 
those two, the four-finger FHD is ready to be hooked up as soon as the 
board is finished.
 Drivers and real-time control software from the first version will be readily 
ported to version two.  The second version of the user-interface is on the 
drawing board and will be a VR-type simulated environment showing a 3D 
model of the control environment.

BRL SURGICAL ROBOT:
 A teleoperated laproscopic device with haptic feedback.  7 degrees of 
freedom give the robot a spherical range of laproscopic access.  The low 
inertia design uses motors located at a stationary base and connected to 
axes by pretensioned cables.  The robot is divided into two parts, a goss-
scale upper arm with a higher-precision lower arm holding laproscopic 
tools.
 Control of the surgical robot’s 7 degrees of freedom will be via the 
BRL control board.  Cabling requirements between the base-platform 
and the PC-controller (with user-interface) will reduce to a single USB 
cable.  This will simplify set-up and use, and make the robot more easily 
servicable.  Complete access 
to control system hardware will 
allow fine-tuning of this high-
precision robot.

VERSION TWO DESIGN FEATURES:
 • Same CPU and USB configuration provides 8-16 independent  
   degrees of freedom.
 • 8 24-bit quadrature encoder channels.
 • 16 16-bit DAC outputs.
 • 16 16-bit A/D converters
 • On-board CAN bus connector provides additional output channels

Fig.7- Lower arm 
is attatched to 
stationary base

Fig.2 The BRL 
control board 
requires only one 
USB cable for all 
communication 
with control 
host.  The fully 
programmable 
board mediates all 
data I/O.
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Fig. 4 Control loop timing diagram.

SYSTEMS UNDER DEVELOPMENT:
 At BRL we have several systems already developed or under 
development that will be controled by versions one and two of our 
control system.

Fig. 9: Rainer gives the FHD the 
finger

Fig.8: CAD drawing shows a single 
digit of the FHD

Fig.3: “The Board” version 1.

SOFTWARE, DRIVER AND HOST 
SYNCHRONIZATION:
 In order to meet stringent timing requirements of high-performance force-
feedback robotics the entire host-based control system executes in a “hard-
real-time” environment provided by RTAI (Real-Time Aplication Interface) 
extensions to the Linux kernel.  RTAI Linux  ensures code execution at 
exact times or intervals of time (specified in nanoseconds) by preempting 
the Linux kernel and taking exclusive control of the processor as necessary.  
Coding for the RTAI computing context demands adherence to a stringent, 
high-performance coding paradigm.
 Our USB device driver is originally based on the usb_skeleton.c driver- a 
model Linux driver for USB devices.  Rewrites of the driver were necessary 
to execute bulk-mode microframe transfers.  Great effort went into ensuring 
RTAI compliance, as all sleeping and blocking function calls in the driver and  
USB subsystem were tracked down and rewritten, removed or avoided.
 A similar driver was written for the CAN bus, in preparation for using the 
built-in CAN functionality of our board.  The available open-source CAN 
drivers provided a user-space API unsuitable for access in kernel-space or 
from RTAI.  Again we had to crack open the black box and re-wire it to our 
needs.
 The control-loop for the system is implemented as a hard real time 
task-loop that executes with a given frequency (specified at compile time, 
we’ve chosen to use 1ms).  At the tick of one millisecond the loop begins 
by sending a USB packet from the host to the board requesting the latest 
encoder values.  Next, we read the position values from the USB bus into a 
data structure holding all information for all degrees of freedom.  From there 
we call a function calculate_force() that will update force values in our data 
structure.  That function is a modular system; parts of it will be modified for 
the unique dynamics of each robot.   The force value is output to the board 
and the loop sleeps until the start of the next period.

Fig. 6: BRL Surgical Robot attatched to a 
stationary base.

PULLEY BOARD:
 The pulleyboard is a one-degree-of-
freedom testbed for robotic assemblies.  
A brushless Maxon DC motor is drives an 
armature via a pretensioned cable.  The 
cable runs through a series of pulleys 
between the motor and the armature to 
simulate the surgical robot’s cable-pulley 
configuration.
 This test platform will be used to test 
various pulley and cable options for the 
surgical robot.  The Pulley board system 
also provides a simplified robotic system 
for exploring related problems and as a 
control development testbed.

Fig.8: Upper arm. 

Fig.5: The pulley board is a testbed 
for the cable-pulley mechanism.
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